Surname	Centre Number	Candidate Number
Other Names		0

GCSE – NEW

C410UA0-1

CHEMISTRY – Component 1: Concepts in Chemistry

HIGHER TIER

THURSDAY, 17 MAY 2018 - MORNING

2 hours 15 minutes

For Examiner's use only					
Question	Maximum Mark	Mark Awarded			
1.	10				
2.	10				
3.	10				
4.	8				
5.	11				
6.	5				
7.	9				
8.	9				
9.	8				
10.	11				
11.	17				
12.	12				
Total	120				

ADDITIONAL MATERIALS

In addition to this paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

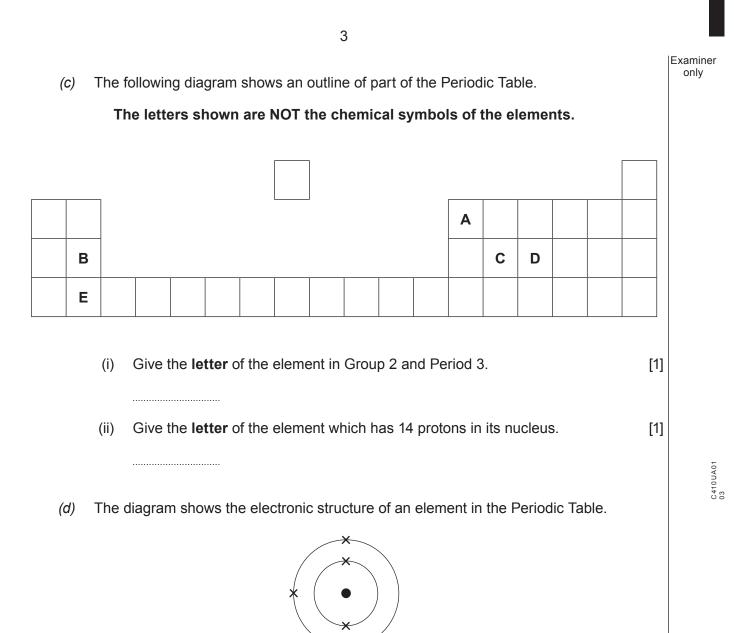
Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet.

If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES


The number of marks is given in brackets at the end of each question or part-question.

Question **11**(*c*) is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.

Answer all questions.						Examiner only			
1. <i>(a)</i> T	1. <i>(a)</i> The table shows some information about particles found in atoms. Complete the table. [2]								
		Particl	е	Relativ	e mass	Relat	ive charge		
		protor	٦				+1		
		electro	n	negli	gible				
		neutro	'n		1		0		
<i>(b)</i> Complete the following table that shows information about atoms of some elements. [3]									
Elemen	t	Mass number		omic mber	Numbe proto		Number of neutrons	Number of electrons	
fluorine	:	19		9	9		10		
potassiu	m	39		19			20	19	
argon				18	18		22	18	

2

Draw the diagram which shows the electronic structure of the element which lies directly **below** it. [1]

×

Examiner only

(e) The definition of an element is:

"a substance that cannot be broken down into simpler substances by chemical methods".

In the 1700s a chemist named Antoine Lavoisier attempted to arrange substances in a pattern. The table shows some of the 'substances' which Lavoisier thought were elements. He divided the 'substances' into four groups. He published these groups in 1789. The modern names of some of the 'substances' are given in brackets.

Acid-making elements	Gas-like elements	Metallic elements	Earthy elements
sulfur	light	mercury	lime (calcium oxide)
phosphorus	caloric (heat)	copper	magnesia
charcoal (carbon)	oxygen	nickel	(magnesium oxide)
	azote	gold	barites (barium sulfate)
	(nitrogen)	iron	silex
	hydrogen	zinc	(silicon dioxide)

(i) Name **one** 'substance' in the table which is **not** a chemical element or compound. [1]

(ii) The 'earthy elements' are now known as compounds. Suggest why Lavoisier thought they were elements. [1]

10

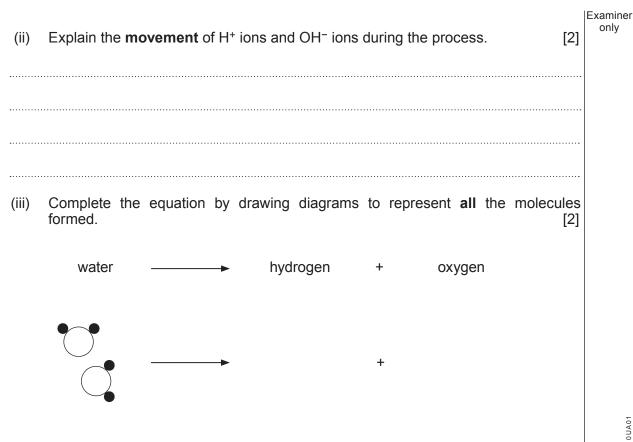
5

C410UA01 05

BLANK PAGE

Examiner only

2. (a) The following apparatus is used to show the electrolysis of water.

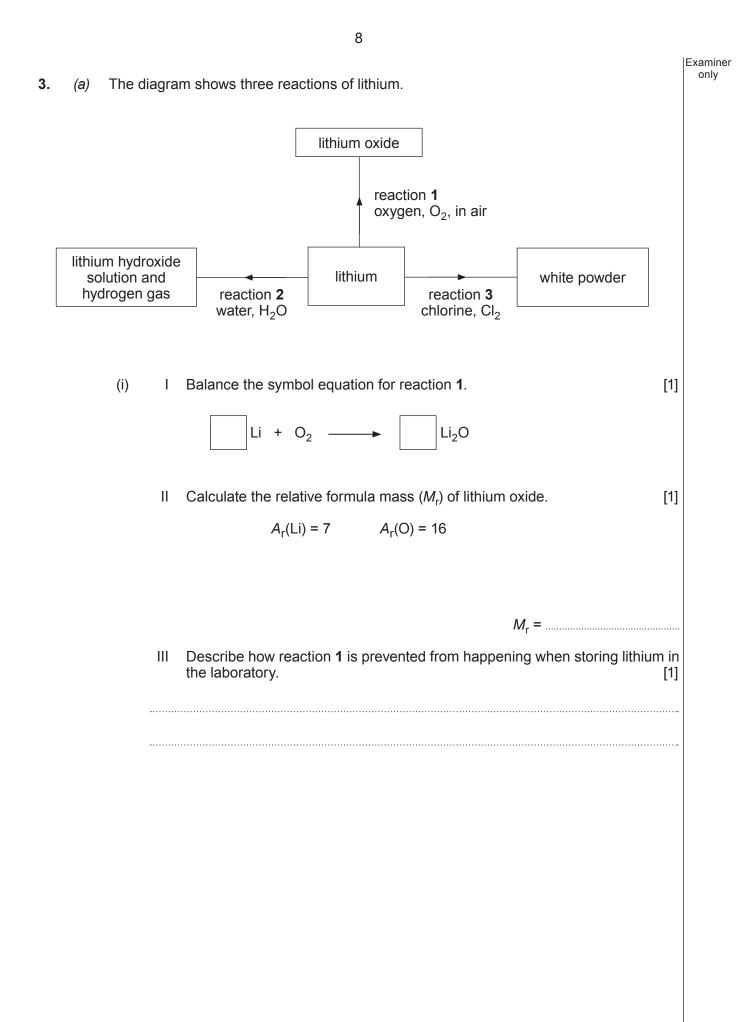

oxygen

(i) Choose the letter of the graph which shows the relationship between the volume of hydrogen and the volume of oxygen formed during the process. Give the reason for your choice. [2]

hydrogen

water

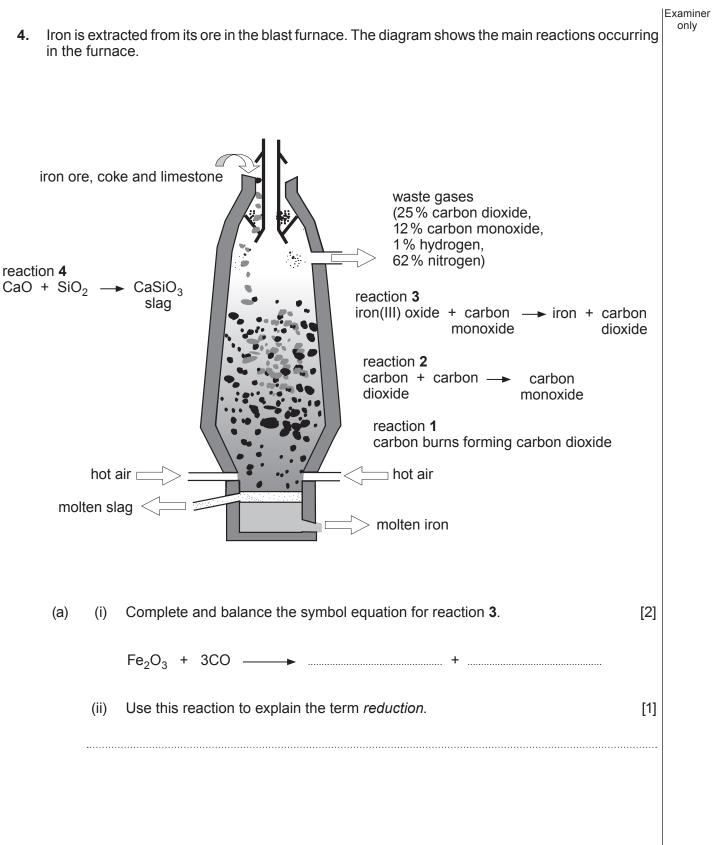
10 9 В 8 7 6 Volume of oxygen (cm³) 5 С 4 3 2 1 0 2 Ś 5 4 6 8 9 0 1 7 10 Volume of hydrogen (cm³) Letter Reason (C410UA0-1) © WJEC CBAC Ltd.



(b) The table below shows the symbols of the ions present in three electrolytes and the products formed during their electrolysis. **Complete the table.** [4]

	Symbol of ions pro	esent in electrolyte	Name of pro	duct formed
Electrolyte	Electrolyte Positive ion(s)		At the cathode ([–])	At the anode (+)
molten lead(II) iodide			lead	iodine
aqueous copper(II) sulfate	Cu ²⁺ H ⁺	SO4 ^{2−} OH [−]		oxygen
aqueous lithium chloride	Li ⁺ H ⁺	CI ⁻ OH ⁻	hydrogen	

10


C410UA01 07

	(ii)	Complete and balance the symbol equation for reaction 2 .	[2]	Examiner only
		2Li + 2H ₂ O → +		
		II Explain the colour seen when a few drops of universal indicator are adde the solution formed in reaction 2 .	ed to [2]	
	(iii)	Write a balanced symbol equation for reaction 3 .	[2]	
(b)	Give	e the chemical formula of lithium carbonate.	[1]	

C410UA01 09

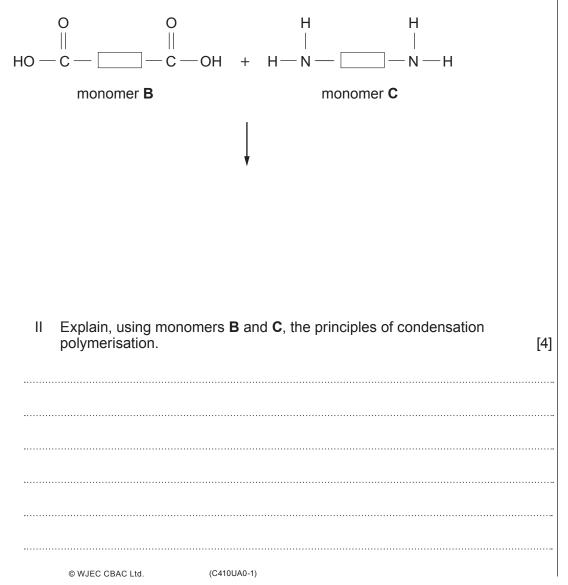
10

(b)	Give the type of reaction taking place in the formation of slag. Give a reason for y answer.		Examiner only
•••••		•••••	
(C)	Explain how calcium oxide is formed in the furnace.	[2]	
(d)	Suggest how the cost of the process is reduced by using some of the waste gases.	[1]	

8

C410UA01 11

Examiner only


[2]

- **5.** (a) Polymers are very large molecules made when many smaller molecules join together, end to end. The smaller molecules are called monomers. The process of small monomers joining together is called polymerisation. There are two types of polymerisation.
 - (i) Monomer **A** undergoes addition polymerisation. Complete the table.

Monomer A	Functional group needed for addition polymerisation	Repeating unit
H H C=C H		

(ii) I Monomers **B** and **C** can undergo a condensation reaction.

Complete the diagram by showing how these two molecules join together forming two products. [2]

Examiner

PMT

l only

C410UA01 13

When manufacturers produce soft drinks they often package the same product in different materials. Each type of disposable drink container has an environmental impact.

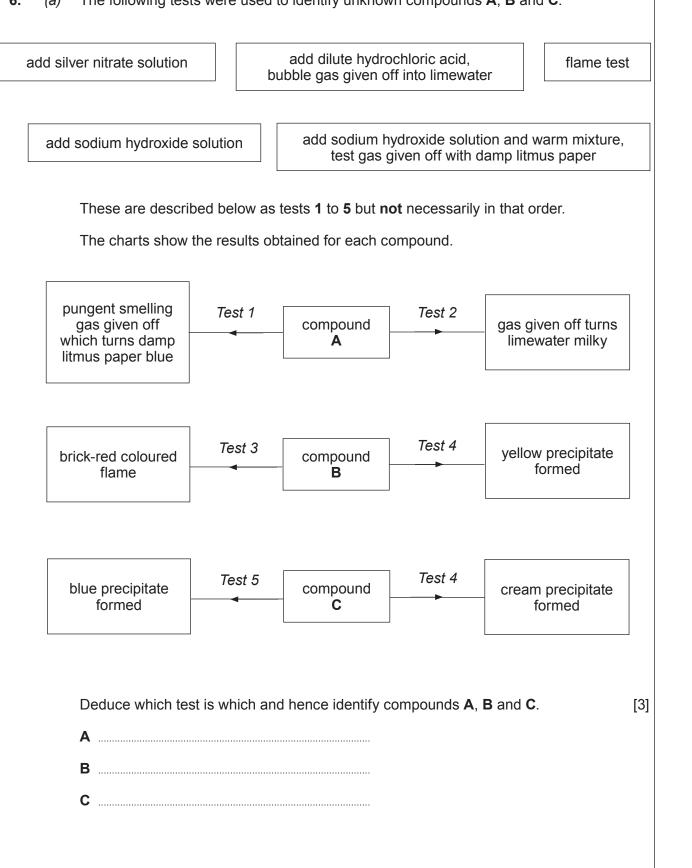
13

(b)

Scientists carried out a life cycle assessment (LCA) for three different disposable drinks' containers. The table shows some information from the life cycle assessment.

	Plastic bottle (PET)	Glass bottle	Aluminium can
Raw material(s)	petroleum	sand, sodium carbonate and limestone	bauxite
Mass of carbon dioxide emitted per container during production (g)	142	226	168
Mass of 330 ml container (g) (mass impacts on truckload size and therefore fuel use)	11	200	24
Recycling	25% recycled into new bottles 75% recycled into other products such as wheelie bins and eco-fleece due to degradation in properties	40% recycled into new bottles no degradation of properties therefore can be recycled indefinitely	70% recycled into new cans no degradation of properties therefore can be recycled indefinitely
Time to break down in the environment	400 years	400 years	80 years

Use the information from the table to state which material in your opinion has the least environmental impact.

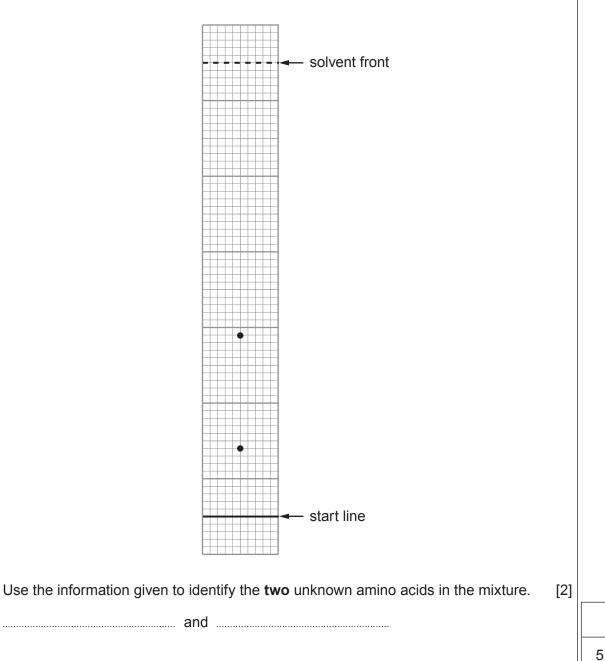

Give three pieces of evidence to support your choice.

[3]

11

Examiner only

6. (a) The following tests were used to identify unknown compounds **A**, **B** and **C**.



(b) Colourless aqueous solutions of amino acids can be separated by paper chromatography. Spots appear when the paper is sprayed with a 'locating agent'.

The table shows the $R_{\rm f}$ values for some amino acids.

Amino acid	R _f value
glycine	0.25
alanine	0.40
valine	0.70
proline	0.45
serine	0.30
lysine	0.15
cysteine	0.10

A student was given the chromatogram of a mixture of two unknown amino acids.

Turn over.

C410UA01 15

BLANK PAGE

16

Examiner

PMT

7. (a) Gareth and Caroline investigated the displacement reaction between iron filings and copper(II) sulfate solution. The equation for the reaction is as follows.

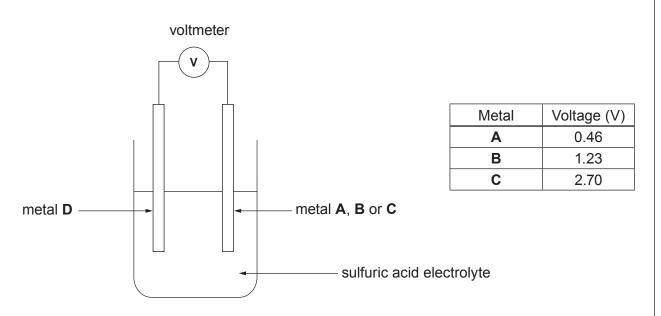
 $Fe(s) + CuSO_4(aq) \longrightarrow FeSO_4(aq) + Cu(s)$

Both students carried out the following procedure.

0.56 g of iron fillings were added to excess aqueous copper(II) sulfate. Once all the iron fillings had reacted, the copper formed was filtered, dried and weighed accurately.

The mass of copper expected was 0.64 g.

(i) Gareth obtained a value of 0.71 g. Suggest **one** possible reason for the higher than expected mass. State how this problem could be overcome. [2]


(ii) Caroline obtained a value of 0.61 g. Suggest one possible reason for the lower than expected mass. State how this problem can be overcome. [2]

Examiner only

(*b*) The students were asked to find the relative positions in the reactivity series of four unknown metals, **A**, **B**, **C** and **D**.

Gareth measured the voltage formed in a simple chemical cell. He paired metals **A**, **B** and **C** in turn with metal **D**. Metal **D** is the least reactive of the metals. The voltage formed by each pair of metals is shown in the table.

In a chemical cell, the further apart the electrode metals are in the reactivity series the greater the voltage generated.

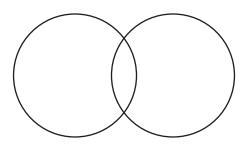
Caroline carried out a series of displacement reactions. She added metals **A**, **B**, **C** and **D** to separate solutions containing the nitrate of a different metal ion.

Complete the table below to show the results that would support Gareth's evidence. [2]

Use a tick (\mathcal{I}) to show that a reaction occurs and a cross (\mathbf{x}) to show that no reaction occurs.

Motol		Metal nitra	te solution	
Metal	metal A nitrate	metal B nitrate	metal C nitrate	metal D nitrate
Α				
В				
С				
D				

(c)	Suggest a reason why Gareth's is a better method than Caroline's for finding the relative positions of metals in the reactivity series. [1]	Examiner only
(d)	Metal D has two main isotopes, 63 D and 65 D.	
	A sample of metal D contains 70 % ⁶³ D atoms and 30 % ⁶⁵ D atoms.	
	Calculate the relative atomic mass (A_r) of metal D to three significant figures. [2] $A_r =$	
		9

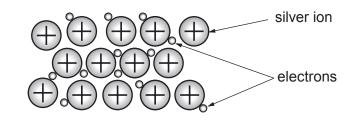

Examiner only

8. (a) (i) Calcium reacts with oxygen to form calcium oxide.

Using the electronic structures below, draw dot and cross diagrams to explain the bonding in calcium oxide. Show only outer shell electrons in your diagrams. [3]

calcium 2,8,8,2 oxygen 2,6

(ii) Complete the diagram showing the outer shell electrons in an oxygen molecule, O_2 . [2]


(iii) Calcium oxide has an ionic structure and melts at 2572 °C. Oxygen has a simple covalent structure and melts at −219 °C.

Explain the difference in the melting points of calcium oxide and oxygen. [2]

Examiner only

(b) The diagram shows the structure of metallic silver.

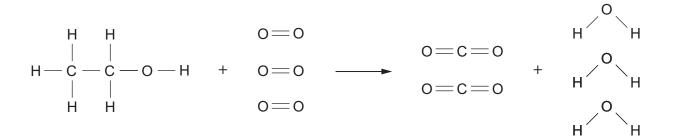
Explain why silver conducts electricity.

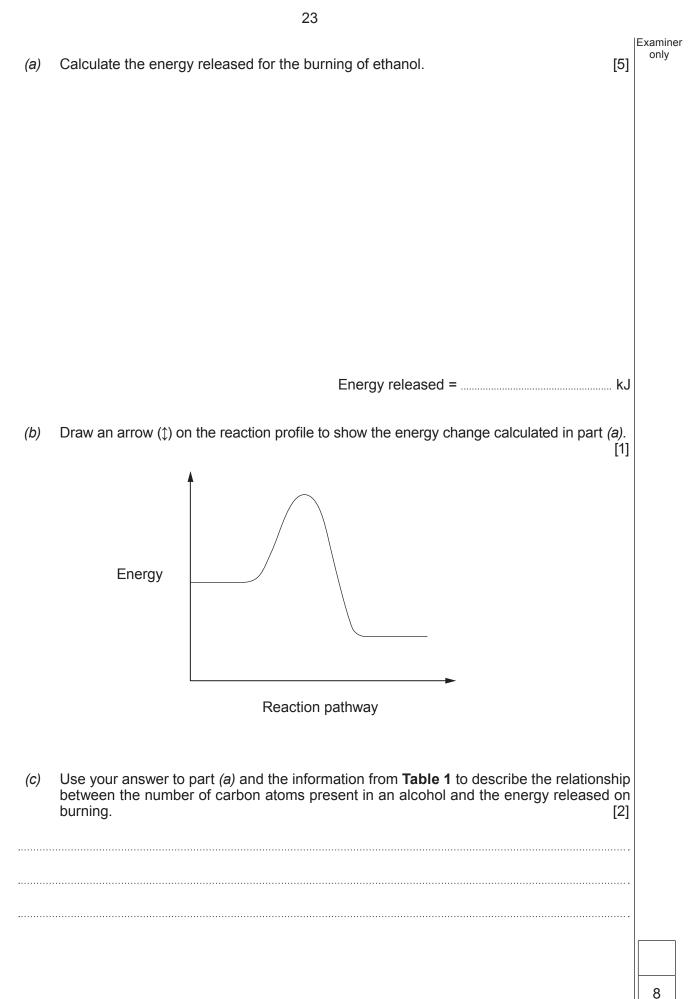
9

[2]

9. Alcohols can be used as fuels. **Table 1** shows the first five members of the alcohol homologous series. The theoretical values for the energy released when alcohols are burned are also shown. The value for ethanol is missing.

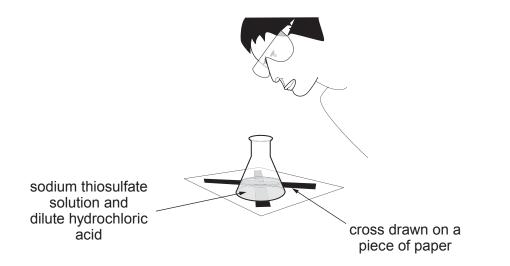
Alcohol	Molecular formula	Energy released (kJ)
methanol	CH ₃ OH	658
ethanol	C₂H₅OH	
propanol	C ₃ H ₇ OH	1894
butanol	C ₄ H ₉ OH	2512
pentanol	C ₅ H ₁₁ OH	3130




The energies of the bonds broken and formed as alcohols burn are shown in Table 2.

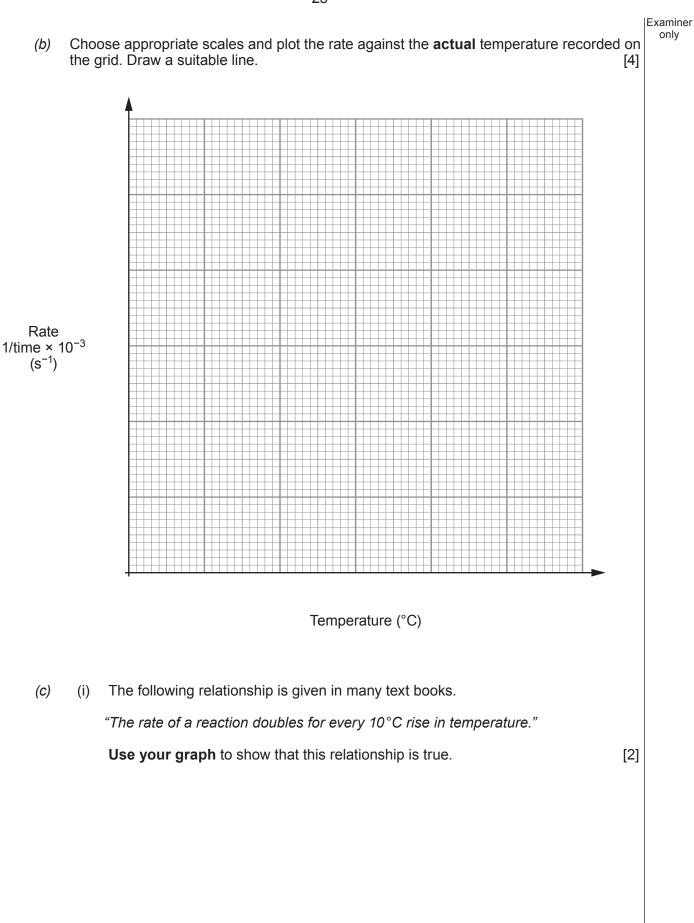
Bond	Bond energy (kJ)	
O—H	464	
C—C	347	
C—H	413	
C—0	358	
C=0	805	
0=0	498	

Table 2


The following equation shows the rearrangement of atoms as ethanol burns.

Examiner

10. Sodium thiosulfate solution reacts with dilute hydrochloric acid forming a yellow precipitate. This reaction can be investigated using the 'disappearing cross' experiment.



50 cm³ of sodium thiosulfate solution was heated in a water bath until a target temperature was reached. The flask was removed from the water bath and the actual temperature was recorded just before 10 cm³ of hydrochloric acid was added. A stopwatch was started immediately. The time taken for the cross to disappear was recorded. This procedure was repeated at different temperatures. The concentrations of the acid and the sodium thiosulfate solutions were kept the same in each experiment.

The results are shown below.

Target temperature (°C)	Actual temperature recorded (°C)	Time for cross to disappear (s)	Rate 1/time × 10 ⁻³ (s ⁻¹)
20	19	250	4
30	27	167	6
40	39	62	15
50	49	33	30
60	59	17	59

(a) Suggest a reason for the difference between the target temperature and the actual temperature recorded for each reaction. [1]

Turn over.

(ii)	Using the relationship given in part (i) find the time , in seconds, it would take for the cross to disappear at 70 °C. Show your working. [3]	Examiner only
	Time = s	
(iii) 	At 80 °C the reaction would take less than 5 seconds. Explain why the time recorded at 80 °C would be a less accurate reading than at lower temperatures. [1]	

11

27

BLANK PAGE

		Examiner only
	$CH_4(g) + H_2O(g) \rightleftharpoons 3H_2(g) + CO(g)$	
The	forward reaction is endothermic.	
(i)	Explain why a high temperature and a low pressure would give the maximum yield of hydrogen. [3]	
······		
••••••		
••••••		
·····		
(ii)		
	$\Delta tom economy = \frac{9}{6}$	
(iii)		
()	temperature and pressure from 0.16g of methane. The volume of 1 mol of gas at room temperature and pressure is 0.024 m ³ .	
	Give your answer in m ³ . [3]	
	Volume of hydrogen = m ³	
	stea The	steam. $CH_4(g) + H_2O(g) \rightleftharpoons 3H_2(g) + CO(g)$ The forward reaction is endothermic. (i) Explain why a high temperature and a low pressure would give the maximum yield of hydrogen. [3] (i) Explain why a high temperature and a low pressure would give the maximum yield of hydrogen. [3] (ii) Calculate the atom economy for the manufacture of hydrogen using this reaction. Give your answer to three significant figures. [2] $A_r(H) = 1 \qquad A_r(C) = 12 \qquad A_r(O) = 16$ (ii) Calculate the maximum volume of hydrogen that could be formed at room temperature and pressure from 0.16g of methane. The volume of 1 mol of gas at room temperature and pressure is 0.024 m ³ .

Examiner

(b) A three component fertiliser contains a mixture of ammonium nitrate, potassium chloride and ammonium phosphate.

Complete the table by identifying the **three** essential elements this fertiliser provides. State why each element is essential. [3]

Element	Benefit to plants

(c) Phosphoric acid contains hydrogen ions (H^+) and phosphate ions (PO_4^{3-}).

Ammonium phosphate is manufactured by reacting ammonium hydroxide solution with phosphoric acid, H_3PO_4 . Describe a titration method for making pure crystals of ammonium phosphate in the laboratory. Include an equation in your answer. [6 QER]

17

Examiner only

[3]

[1]

12. (a) The label shows the ingredients in 'Sparkling Apple Drink'.

A student was asked to find the concentration of carbonic acid in 'Sparkling Apple Drink'. He decided to do this by titrating the drink against sodium hydroxide solution.

 He found that 25.0 cm³ of 'Sparking Apple Drink' was neutralised by 15.0 cm³ of sodium hydroxide solution of concentration 0.10 mol/dm³. The relative formula mass of carbonic acid is 62.

 H_2CO_3 + 2NaOH \longrightarrow Na₂CO₃ + 2H₂O

I Calculate the student's value for the concentration of carbonic acid in mol/dm³.

Concentration =		mol/dm ³
-----------------	--	---------------------

II Write this concentration as a value in g/dm³.

(ii) Suggest why the concentration of carbonic acid in 'Sparking Apple Drink' is actually less than that found by the student. [1]

Examiner only

12

(b) The flow diagram shows some reactions of ethanoic acid.

 (i) Name the product with the formula CH₃COONa. [1 (ii) Write a balanced symbol equation for the reaction between ethanoic acid an magnesium. [3 (c) Dilute ethanoic acid (pH 3) reacts less vigorously with magnesium than dilute hydrochlori acid (pH 1) of equal concentration. Explain the reason for this difference in behaviour. [3 	С	H ₃ CO and		sodium carbonate	dilute ethanoic acid CH ₃ COOH	magnesium	colourless solution and hydrogen gas
 (c) Dilute ethanoic acid (pH 3) reacts less vigorously with magnesium than dilute hydrochlori 		(i)	Name the	e product with t	he formula CH ₃ CC	DONa.	[1]
		(ii)			ol equation for th	ne reaction bet	
			-				[0]
	(C)						n than dilute hydrochloric
	(c)						n than dilute hydrochloric

END OF PAPER

(C410UA0-1)

BLANK PAGE

BLANK PAGE

33

PMT

For continuation only.	Examiner only

34

(C410UA0-1)

FORMULAE FOR SOME COMMON IONS

POSITIVE IONS		NEGATIVE IONS	
Name	Formula	Name	Formula
aluminium	Al ³⁺	bromide	Br ⁻
ammonium	NH4 ⁺	carbonate	CO3 ²⁻
barium	Ba ²⁺	chloride	CI
calcium	Ca ²⁺	fluoride	F [−]
copper(II)	Cu ²⁺	hydroxide	OH [−]
hydrogen	H⁺	iodide	1-
iron(II)	Fe ²⁺	nitrate	NO ₃ ⁻
iron(III)	Fe ³⁺	oxide	0 ²⁻
lithium	Li ⁺	sulfate	SO4 ²⁻
magnesium	Mg ²⁺		
nickel	Ni ²⁺		
potassium	K ⁺		
silver	Ag ⁺		
sodium	Na ⁺		
zinc	Zn ²⁺		

	-	_	4	×	~	Ľ.
~		19 F Fluorine 9	35.5 CI Chlorine	Br Br 35 35	127 lodine 53	210 At Astatine 85
و		16 O Sygen 8	32 Sulfur 16	79 Selenium 34	128 Te Tellurium 52	210 Polonium 84
Ŋ		14 Nitrogen 7		75 As Arsenic 33	122 Sb Antimony 51	209 Bi 83
4		12 C Carbon 6	28 Silicon 14	73 Ge Germanium 32	119 Sn 50	207 Pb Lead 82
ო		11 B Boron 5	27 Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 TI Thallium 81
щ				65 Zn 2inc	112 Cd Cadmium 48	201 Hg Mercury 80
IABL				63.5 Cu Copper 29		197 Au Gold 79
DIC				59 Nickel 28	106 Pd Palladium 46	195 Pt 78 78
RIOI					103 Rhodium 45	192 Ir 77
THE PERIODIC TABLE Group	F]		56 Fe Iron	101 Ru Ruthenium 44	190 Osmium 76
THE Group	Hydrogen			55 Mn anganese 25	99 Tc schnetium 43	186 Re 75

 2 Helium 2

0

Ç	

~

	6 6 0	Oxygen 8	32 S	Sulfur 16	79 00	Selenium 34	128 Te	Tellurium 52	210 Po	Polonium 84		
	5 ∠	Nitrogen 7	ک ط	Phosphorus 15	75 A c	Arsenic 33	122 Sb	Antimony 51	209 Bi	Bismuth 83		
	6 O	Carbon 6	²⁸ Si	Silicon 14	73	Germanium 32	119 Sn	Tin 50	207 Pb	Lead 82		
	₽⊐	Boron 5	27 AI	Aluminium 13	0 را ۲	Gallium 31	115 In	Indium 49	204 TI	Thallium 81		
					65 7 7	Zinc 30	112 Cd	Cadmium 48	201 Hq	Mercury 80		
					63.5 CII	Copper 29	108 Ag	Silver 47	197 Au	Gold 79		
					59 NI	Nickel 28	106 Pd	Palladium 46	¹⁹⁵ Pt	Platinum 78		
					20 20	Cobalt 27	103 Rh	Rhodium 45	192 Ir	Iridium 77		
5]				56 E O	lron 26	101 Ru	Ruthenium 44	190 Os	Osmium 76		Key
1					55 Mn	Manganese 25	⁹⁹ Tc	Technetium 43	186 Re	Rhenium 75		
					5 2 7	Chromium 24	⁹⁶ Mo	Molybdenum 42	¹⁸⁴	Tungsten 74		
					51	Vanadium 23	⁹³ Nb	Niobium 41	Ta Ta	Tantalum 73		
						Titanium 22		Zirconium 40	179 Hf	Hafnium 72		
					0 0 0	Scandium 21	88 ≻	Yttrium 39	139 La	Lanthanum 57	227 AC	Actinium 89
	в Ве	Beryllium 4		~	4 (Calcium 20		Strontium 38	137 Ba	Barium 56	226 Ra	Radium 88
	7 Li	Lithium 3	23 Na	Sodium 11	8 39	Potassium 19	86 Rb	Rubidium 37	133 Cs	Caesium 55	223 Fr	Francium 87
	© WJEC CBAC Ltd.)UA0-1)							

36

222 Rn Radon 86

relative atomic mass atomic number Ar Symbol Name Z PMT